

UPPSALA UNIVERSITET

Predicting Reductions in COPD Exacerbations from FEV₁ A model-based meta-analysis of literature data from controlled randomized clinical trials Jakob Ribbing^{1,2,a}, Julia Korell^{2,b}, Frank Cerasoli^{1,c}, Peter A Milligan¹, Steven W Martin¹, Mats O Karlsson² Affiliation: 1 Pfizer LTD; 2 Uppsala University Current employment: a) Pharmetheus AB; b) Model Answers Pty Ltd; c) Medical Dynamics

Methods

Introduction

In Chronic Obstructive Pulmonary Disease (COPD), shorter duration Phase 2 studies assess forced expiratory volume in one second (FEV₁) whereas Phase 3 chronic maintenance studies assess the registrable endpoint: prevention of COPD exacerbations.

The main objective was to describe the relationship between FEV₁ and annual rate of moderate-severe[1] exacerbations (ER) utilizing summary-level, literature data.

Data was extracted from 29 randomized trials (80 treatment arms), of 43 472 patients. As predictors of ER, model-predicted trough FEV₁[2] at baseline and week 12, as well as covariates, were investigated using NONMEM. Placebo ER was a function of covariates and interstudy variability (ISV). The ER ratio (treatment vs. placebo) was described by separate functions for FEV₁ efficacy ($\Delta\Delta$ FEV₁) for direct bronchodilators (long-acting; LABD) and antiinflammatory (AI) agents.

Conclusions

- The investigated AIs have modest efficacy on FEV₁, but for patients washed out of ICS, these treatments achieve reductions in ER comparable to the new-generation LABD
- The outcomes from this analysis may be applied for designing Phase 3 efficacy studies, pharmaco-economic outcomes $TVERplac_{ij} = \langle TVERplac_{ij} \rangle$ analyses[4,5], and assessing comparative effectiveness (CE).
- Using model-predicted FEV₁ allowed including studies without proper FEV₁ trough measurements, and to separate efficacy into LABD and AI components, for combination treatments.
 - This approach also allowed separating covariate effects acting indirectly, via the FEV₁ biomarker (e.g. interaction between LABA and LAAC)[2], from those acting directly on the FEV1-ER translation (interaction between ICS and PDE4i), which enabled accounting for the full uncertainty (in FEV₁ and FEV₁-ER models), e.g. for CE in different subpopulations and conmeds.

The placebo ER (mean number of exacerbations per patient, per year) was a function of a) baseline FEV_1 percent of normal (%FEV₁), b) percent of patients washed out from ICS (ICS_{washout}) and c) requirement of patient history of exacerbation(s) (ER_{history}), according to:

 $\int ERplac \cdot e^{(\% FEV_{1_{ij}}-41) \cdot E_{\% FEV_{1}} + (\% ICS_{washout_{ij}}-54) \cdot E_{ICSwashout}}$ if $ER_{hist_i} = 1$ $ERplac \cdot e^{(\% FEV_{1_{ij}} - 49) \cdot E_{\% FEV_1} + (\% ICS_{washout_{ij}} - 44) \cdot E_{ICSwashout}} \cdot (1 + E_{ERhist})$ if $ER_{hist_i} \neq 1$

The ER ratio (relative to placebo) was a function of FEV_1 efficacy contributions (difference from placebo) from LABD $(\Delta\Delta FEV1_{LABD})$ and AI $(\Delta\Delta FEV1_{AI})$, the latter in interaction with the percent ICS-experienced patients (%ICS_{exp}), according to:

 $RAT_{ij} = e^{\Delta\Delta FEV1_{LABD_{ij}} \cdot Slope_{LABD} + \Delta\Delta FEV1_{AI_{ij}} \cdot Slope_{AI}} \cdot \left(1 - \frac{\% ICS_{exp_{ij}}}{100} \cdot \frac{\Delta\Delta FEV1_{AI_{ij}} \cdot Emax_{AIexp}}{\Delta\Delta FEV1_{AI_{ij}} + EFEV1_{50_{AIexp}}}\right)$

Outcomes were derived as point estimate [95%] confidence interval (CI)] versus the reference arm.

Results

Table 1. Parameter estimates relevant for appropriately weighted means[3]

Namo	Description	Point	RSE
		Estimate	(%)
ERplac	Mean annual rate for the typical trial with requirement of exacerbation history	1.38	4
E_{ERhist}	Change in ER for the typical trial without requirement of exacerbation history	-0.322	13
E _{%FEV1}	Change in ER for each percentage point change in $\%$ FEV ₁	-0.0264	34
E _{ICSwash}	L _{it} Change in ER for each percentage point change in %ICS _{washout}	0.00286	21
Slope	_{BD} $\Delta\Delta$ FEV1 slope for LABD (L ⁻¹)	-1.63	3
Slope	$\Delta\Delta$ FEV1 slope for AI (L ⁻¹)	-1.17	36
Emax	An Maximal reduction for AI in ICS experienced patients	0.22	17
E _{FEV1,50}	$\Delta\Delta$ FEV1 _{AI} that achieves half of the E _{max} -driven ER reduction (L)	0.001	-
σ	Residual error for 500-subject arm & 1-year study duration (CV)	0.0702	10
ω	ISV in exacerbation rate (CV)	0.169	23
	0.00 0.05 0.10	0.15 0.2	20
]	62 % ICS conmed 62 % ICS medhist: was	shed out	
0 .0 –		L	ABD

-0.6 -0.2

Annual Exacerbation Rate log ratio vs. reference

Figure 1. Simulated and observed log ER ratios for all main contrasts in the analysis. The prediction based on simulation is marked with x (surrounded by circle in case based on an unweighted mean[3]), and with a horizontal black line representing the 95% CI. The filled circle represents the observed mean, with colors based on whether the treatment class in active (outer ring) and reference (inner ring) was **Placebo**, LABA, LAAC, ICS, PDE4i, **LABA/LAAC** or **ICS/LABA**. Two out of 51 observed main contrasts were outside the simulated 95% CI (highlighted in red), indicating an appropriate coverage probability.

References

- 1. M. Cazzola, et al., Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J, 2008. 31(2): 416-69.
- 2. J. Korell, S.W. Martin, M.O. Karlsson and J. Ribbing. A model-based longitudinal meta-analysis of FEV₁ in randomized COPD trials. Clin Pharmacol Ther. 2016 Mar;99(3):315-24. Epub 2015 Oct 22.
- 3. S. Suissa, Statistical treatment of exacerbations in therapeutic trials of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2006. 173(8):842-6.
- 4. J.F. Slejko, R.J. Willke, J. Ribbing and P. Milligan. Translating Pharmacometrics to a Pharmacoeconomic Model of COPD (in manuscript).
- 5. R.J. Willke, J.F. Slejko, J. Ribbing and P. Milligan. Calibration of a Health Economic Microsimulation Model to Pharmacometric Model-Based Meta-Analysis Predictions: A Chronic Obstructive Pulmonary Disease Example (in manuscript).

Trough FEV1 double delta (L)

Figure 2. Model predicted log ER ratio versus trough $\Delta\Delta$ FEV1 for the two different types of treatment, and given two different scenarios; In both scenarios a more severe population is considered, but left-hand panel represents a study design where ICS experienced patients remain on ICS background whereas in the right-hand panel they are required to wash out from ICS prior to randomization. The solid line represents the median, and the broken lines the 95% CI, based on the uncertainty in population parameters. For AI treatment, the solid line has been extended with a dotted line, to indicate extrapolation outside the available data range. For log(ER-ratio) < -0.2 (>18% reduction in ER), LABDs must achieve at least a $\Delta\Delta FEV_1$ of 122 mL [114mL-132mL]. For the scenario with 62% ICS washout, an AI treatment (ICS/PDE4i) must achieve at least a $\Delta\Delta$ FEV₁ of 45 mL [17mL-79mL], to reach log(ER-ratio) < -0.2.